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DISTRIBUTION SELECTION 

INTRODUCTION 

When quantifying the effects of uncertainty on a system there is a dilemma that 

many face: the selection of most appropriate distribution for each of the input 

variables. This article will cover a collection of principles and various methods 

that can be used when deciding upon the most suitable distribution for an input 

variable. Some attention will be given to the application of these methods; 

however, it is ultimately up to you to determine the best application for each 

situation that you encounter. 

ENTROPY 

Entropy was first used as a scientific term when it was used to describe the way in 

which the quality of energy in a system will tend to decrease. Since then its use 

has moved into other fields, including probability. Within the context of 

probability entropy is used a measure of the uncertainty regarding the value or 

state of a system. The less certain we are of the state or value a system will take, 

the greater the entropy of that system.  

The expression for entropy H is as shown in the formula below. 
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Where: 
n is the number of states or values possible 
pi is the probability of the i

th possible state occurring 

If there were only one possible state then the probability of that state would have 

a value of unity, and the above expression would be equal to zero: no entropy or 

uncertainty. When you wish to select a distribution for an input variable you 

should maximize the entropy given the knowledge you have. By doing this, you 

can ensure that you do not select a distribution that implicitly places unconfirmed 

constraints upon the random variability (or uncertainty). Thus, by selecting a 

distribution that maximizes the entropy you select an unbiased distribution that 

reflects the knowledge you actually have. How is such a distribution identified? 
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The above definition of entropy can be applied to the case where p is replaced by a 

continuous Probability Density Function (PDF) f(x). The general form of f(x) that 

maximizes the entropy can then be found. The general form is as shown below. 
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Where: 
n is the number moments that are known 

λ0 and λi are constant to be solved for  

With the above expression for the PDF and n moments known, you can develop 

an equation for a distribution that will capture the information you have while still 

maximizing uncertainty. To actually do this can be difficult; the solution needs to 

be found numerically due to the nature of the function. However, others have 

investigated this and reported on cases where the maximum entropy distribution 

is also a standard distribution. Some of these cases are summarized in the table 

below. This is based on the information found in the PhD thesis Charcaterisation of 

the variability of design parameters by Maxine Nelson. The thesis is held at the 

Swinburne University of Technology Library, and might be difficult for you to get 

a hold of. Therefore, if you would like more information on developing maximum 

entropy distributions you might like to take a look at Maximum Entropy Models in 

Science and Engineering by Jagat Narain Kapur or Rational descriptions decisions and 

designs by Myron Tribus. 

Information Maximum Entropy Distribution 

Upper and lower limits Uniform  

Mean and standard deviation Normal  

Mean, standard deviation and limits Normal: truncated 

Mean and limits Exponential: truncated & shifted 

The above table, and the maximum entropy method, is essentially based on the 

information that can be extracted form the data that you have at hand. If you have 

data then this approach is ideal. However, you may not always have data, and you 

will need to use other sources of information when deciding upon the best 

distribution for an input variable. 
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THE CENTRAL 
LIMIT THEOREM 

The central limit theorem deals with the distribution that is produced when 

distributions are added or multiplied together. The most commonly noted form is 

the additive form. The additive central limit theorem can be stated as follows: 

‘The sum of a large number of independent but not necessarily identically 

distributed random variables is approximately normal provided that no one 

random variable contributes appreciably to the sum; that is, no term dominates 

the others.’ From The probability tutoring book by Carol Ash, 1992. 

An extension to the central limit theorem is that for multiplication.  The 

multiplicative form of the central limit theorem says that the distribution of a 

product of a series of random variables tends toward a Lognormal distribution.  

Consider an input variable or parameter that is associated with a phenomenon 

that is additive or multiplicative in nature. That variable or parameter will most 

likely have a distribution that closely resembles a Normal or Lognormal 

distribution respectively. Therefore, if you can determine that the phenomenon 

associated with a random variable or parameter is either multiplicative or additive, 

then you are able to select a distribution that will likely be a good approximation 

of the actual distribution for that variable or parameter. 

Examples:  

The profit of a business or a company division is the result of the 

addition of the various sources of income minus the various costs. If each 

source of income and cost is independently random, then the central limit 

theorem would suggest that the profit will be closely approximated by a 

Normal distribution. This is regardless of the distribution that each 

income source or cost has. Note that subtraction is simply the addition of 

a negative number (or distribution). 

Many natural phenomena can be described by the multiplication of 

various variables. For example, the wear exhibited by a surface exposed 

to rubbing is proportional to the pressure of contact, multiplied by the 

displacement, multiplied by the wear coefficient, divided by the hardness. 
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If each of these were independently random, then according to the 

central limit theorem the evident wear would have a distribution 

approximating a Lognormal distribution.  

As stated above, when independent random variables are added together, the 

resulting distribution tends toward a Normal distribution. Also, multiplication 

results in a tendency toward a Lognormal distribution. Still a question remains: 

how strong is the tendency, or how quickly are the effects evident? The figure 

below shows the resultant distribution from the addition of independent, identical 

uniformly distributed random variables. The Uniform distribution was used 

because of its significant difference from the Normal distribution. For each case, 

the resultant distribution (in pink) is shown with the equivalent (same mean and 

standard deviation) Normal distribution (in blue). The number of Uniform 

distributions added together is indicated by the expression above each plot. 

 

Actual Normal Equivalent 

X+X+X+X 

X X+X 

X+X+X 

 

The figure above demonstrates that the sum of two uniformly distributed 

variables is a Triangular distribution and that the Normal equivalent is similar. 

When three uniformly distributed variables are added, the difference from the 
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Normal equivalent is further reduced; and when four are added together, the 

difference is difficult to distinguish by sight.  

There is considerable difference between a Normal distribution and a Uniform 

distribution. Further, most distributions encountered in practice tend to have 

some kind of a hump in the middle, with a tail at either end. This would suggest 

that typical distributions in the real world are closer to a Normal than a Uniform 

distribution. This would in turn mean that adding real life random variables 

together would result in a Normal like distribution with fewer additions than 

shown in the above figure. 

The effectiveness of the central limit theorem and the tendency for most 

distribution to be more Normal like than Uniform like allow us to draw a 

conclusion: 

The addition of a small number of random variables can be well represented 

by a Normal distribution, and the multiplication of a small number of random 

variables can be well represented by a Lognormal distribution. 

Therefore, the central limit theorem can be applied to many situations, even if the 

number of contributing random variables cannot be determined. What is 

important is that you can determine if the underling phenomenon is multiplicative 

or additive. 

DIMENSIONAL CONSTRAINTS 

Model constraints place restrictions on the form that a model can take. If we 

understand these constraints we are able to gain insight into how random 

variability will propagate through a system. By understanding how random 

variability will be propagated we can ascertain how much information we must 

specify for the distribution of the input variables. In this section we will consider 

a particular constraint: dimensional homogeneity. 

Dimensional homogeneity demands that the dimensions (or units) on one side of 

an expression be the same as the dimensions on the other side. For example, the 

speed of a car (in miles per hours) is found by taking the distance traveled (in 

miles) and dividing that by the time taken (in hours). It would not make sense to 



 
    

CJSteele Uncertainty Management 

www.cjsteele.com
  

6 

 

subtract the time from the distance to get speed. All models must satisfy the 

constraint of dimensional homogeneity, and thus their form is also constrained.  

To explain this, we will use a simple example: a clutch. When considering a clutch we 

are interested in the torque that it can transmit. The torque transmitted (in Newton 

metres Nm) by a new clutch can be calculated using the formula below. 







 −







 −

=
22

33

3

2

io

io

rr

rrFf

T       

Where: 
F is clamping force (in Newtons N) 
f  is the coefficient of friction (friction can be treated as having no dimensions) 
ro is the outer radius (in meters m) 
ri is the inner radius (in meters m) 

Dimensional homogeneity demands that the dimensions on one side of the equal 

sign must be the same as on the other. In this case the dimensions on the left 

hand side are Newton meters (Nm); therefore, the units on the right hand side 

must also be equal to Newton meters. Without going into too much detail on the 

topic of dimensional analysis, the requirement of the dimensions on both being 

equal means we can arrange an equation so that it consists of dimensional groups. 

To demonstrate, the equation for the torque above can be algebraically 

manipulated into the following non-dimensionalized equation/model. 
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From inspection, the first group, 
o

i

r
r

, is dimensionless and the other group, F ro f, has 

the dimensions of Newton meters (just like the torque), and the equation is 

dimensionally balanced. These two groups are a collection of variables that are 

multiplied together, and from the central limit theorem as a group they will likely be 

well represented by a Lognormal distribution. Because we know that each group will 

be well represented by a Lognormal distribution it doesn’t really matter what 
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distribution is allocated to each input variable as long as we have a good measure of 

the average and the variability: the mean and the standard deviation. Therefore, we 

can choose any distribution for the input variables as long as we get the mean and the 

standard deviation right and still be confident that we will be able to predict a 

representative distribution for the output. Or can we? This might seem too simple, and 

in fact it is. 

In the above equation we cannot assume that there is independence between the two 

groups of variables (
o

i

r
r

 and F ro f,); they are both a function of ro. This means that if 

we are going to take advantage of the central limit theorem, we will need to account 

for this interdependency. Experience has found that the full distribution must be found 

for the ‘shared’ variables in a non-dimensionalized model, if the maximum accuracy 

in the output model is desired. However, it has also been found that changes to the 

distribution of the shared variable often have a minor effect (frequently none) upon 

the output distribution.  

From the above it can be concluded that for models that produce relatively large 

groupings of numbers after being non-dimensionalized the distribution for each input 

variable is often unimportant and only the shared variables require extra attention. 

This can reduce your workload when defining the input distribution considerably. 

However, you will need to become familiar with dimensional techniques to do this. 

Still, it is worth doing this because of the time that you can save when selecting 

distributions for the input variables. If you would like to improve you skills in this 

area, an excellent text on the topic of dimensional analysis is Applied Dimensional 

Analysis and Modeling by Thomas Szirtes. A question remains: what other constraints 

might we take advantage of if a model does not produce large dimensional groups? 

While all models can be manipulated so that they are made up of functions of 

dimensional groups, sometimes the groups themselves are many in number and each 

is small in size (perhaps only 2 constituent variables at most). An example would be 

the cash balance at the end of a period in a business model. Everything will have the 

units of dollars, and non-dimensionalization will have little effect on the form of the 

equation. This would limit the effects of the central limit theorem, and you might feel 

that you need to ascertain the most representative distribution for each input variable. 
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However, such models usually allow for consideration that can still enable you to 

determine those variables that require little effort when defining their distributions. 

Models that do not allow for the formation of large dimensional groups after non-

dimensionalization often exhibit a similar quality. Along with the cash balance 

example in the previous paragraph, most business financial models, tolerance 

stacks and conservation equations (mass and energy for example) do not lend 

themselves to non-dimensionalization. The reason for this is that all of these 

situations deal with variables with same units, and produce models that are the 

summation of those variables. Models that are essentially a series of sums do not 

lend themselves to non-dimensionalization, but we can still take advantage of the 

central limit theorem. Because these models are a summation of random variables, 

it would be expected that the output would be well represented by a Normal 

distribution regardless of the actual distribution of each input variable. Therefore, 

in such cases you would really only need to be certain of the mean and the 

standard deviation for each input variable. 

In this section we have seen that by considering the form of our model and the 

central limit theorem we are able to ascertain how much information we must 

accurately specify when defining the distribution for an input variable. For models 

that lend themselves to non-dimensionalization, we really only need to specify the 

complete distribution for those input variable that are shared between 

dimensional groups. For other variables we need only specify the mean and the 

standard deviation, and any distribution type can be chosen. For those models 

that do not lend themselves to non-dimensionalization, we should determine if 

these models are additive. If so, then we know the output will be close to a 

Normal distribution, and we only need to specify the mean and the standard 

deviation for each input variable; any distribution type can then be chosen. 

A note for those lacking dimensional analysis skills 

It might be that you do not have skills in dimensional analysis and you do 

not have the time to develop them. An alternative to developing and 

applying these skills is to change the distribution for each input variable 

from one type to another that is significantly different and observing the 

result. If the change causes a negligible change in your predictions then the 
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variable is not a shared one, and the distribution type is unimportant. If 

there is a difference, then the variable should be treated as a shared one, 

and the full distribution should be found. 

ESTIMATING MOMENTS 

The two most important properties of any distribution are the mean and variance (or 

standard deviation). Before you can start to model the variability of a system output, 

you need to understand the nature of the variability for each input variable. A good 

place to start is the tolerance that is usually specified for the variable of interest or the 

maximum and minimum values that you think are possible. This is the focus of this 

section. 

Typically, the tolerance range is assumed to be equal to about 6 standard deviations 

when the Normal distribution is being used. This means that 99.7% of the time we 

expect the value of the variable will be within the tolerance range. This is a rough and 

ready approach and at times we may expect there to be a different proportion within 

range. The following are some other possible settings: 

Set the standard deviation equal to 1/2 of the tolerance 

range if you are expecting 68% to be within tolerance. 

Set the standard deviation equal to 1/4 of the tolerance 

range if you are expecting 95% to be within tolerance. 

Set the standard deviation set equal to 1/6 of the tolerance 

range if you are expecting 99.7% to be within tolerance. 

Other researchers have extended upon this idea to include the amount of data you 

have or the type of manufacturer/service provider you are using. Haugen says in his 

paper Modern Statistical Materials Selection that estimates should be based on the 

range of values measured from collected data and recommends the following rules: 

From about 4 samples set the standard deviation equal to half the tolerance 

range. Set the mean to the mid point between the maximum and minimum 

From about 25 samples set the standard deviation equal to 1/4 of the 

tolerance range. As above for the mean. 

From about 500 samples set the standard deviation equal to 1/6 of the 

tolerance range. As above for the mean. 
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Shooman, in his book Probabilistic reliability – An Engineering Approach, uses the 

reputation of the manufacturer (or service provider) to estimate the standard deviation 

and uses the following rules: 

If the manufacturer is little known or 

inexperienced or if you are in early development, 

set the standard deviation equal to 1/2 the 

tolerance range. 

If the manufacturer is military, reputable or 

experienced set the standard deviation equal to 1/6 

of the tolerance range. 

The above is only a collection of general rules to provide you with guidance if you 

need it. There may very well be times when you have reason to believe that the 

moments should be determined in a different manner. 

CLOSING 

We have seen from the above that we can: 

• Choose a distribution that is least bias given our understanding of the 

situation by utilizing maximum entropy distributions 

• Use the central limit theorem to determine what distribution can be 

expected when we know the basic nature of the respective underlying 

phenomena  

• Use dimensional constraints to determine which input variables 

require the most comprehensive determination of their distributions 

• Use a collection of heuristics to determine the most appropriate mean 

and standard deviation from sample data. 

However, while these concepts help us determine appropriate distribution with 

greater ease, they do not actually determine them for us. They require us to apply 

our understanding of each situation. Therefore, it must always be remembered 

that it is ultimately up to us to choose the input distribution for each input 

variable. The above concepts are only tools, which we must be certain we have 

used correctly. 


